Bistabilities and annihilation phenomena in electrophysiological cardiac models.
نویسندگان
چکیده
We have investigated the oscillatory behavior of cardiac cellular elements simulated by two electrophysiological models: the van Capelle and Durrer (VCD) model and the sinoatrial node cell model of Yanagihara, Noma, and Irisawa (YNI). The VCD model behavior was examined systematically by using continuation-bifurcation analysis. Bifurcation diagrams were constructed as a function of Qit1, an intrinsic parameter of the model, which sets both maximum diastolic potential and depolarization threshold of the cell. The existence of stable high amplitude oscillations was evidenced between two Hopf bifurcation points (HB). Near each HB, a zone of bistability was detected. Close to the HB that corresponded to high values of Qit1, a high amplitude periodic stable state coexisted with a stable steady state. Close to the other HB, in a narrow range of lower Qit1 values, a relatively high amplitude periodic stable state coexisted with a low amplitude periodic stable state. There was no stable steady state in the latter bistability zone. Through the use of phase-plane representations and the determination of separatrices between the different attractor basins, we could deduce the conditions of timing, polarity, and strength needed for a pulse perturbation to send the system from one state to another and vice versa. The YNI model was analyzed by numerical simulation, and the oscillatory behavior of the sinoatrial node cell was explored while applying a depolarizing bias current of various strengths. Results were similar to those obtained from the VCD model in that there were two bistability regions for two different ranges of applied bias current. Depending on current intensity, annihilation of pacemaker activity could be achieved in both zones. However, the coexistence of two oscillatory stable states was never observed in the YNI model. From the behavioral similarities of these different models, we can conclude that bistabilities and annihilation phenomena can be found in transitional zones between quiescence and rhythmic activity.
منابع مشابه
Benchmarking electrophysiological models of human atrial myocytes
Mathematical modeling of cardiac electrophysiology is an insightful method to investigate the underlying mechanisms responsible for arrhythmias such as atrial fibrillation (AF). In past years, five models of human atrial electrophysiology with different formulations of ionic currents, and consequently diverging properties, have been published. The aim of this work is to give an overview of stre...
متن کامل[A probabilistic model of cardiac electrical activity based on a cellular automata system].
INTRODUCTION AND OBJECTIVES Mathematical models of cardiac electrical activity may help to elucidate the electrophysiological mechanisms involved in the genesis of arrhythmias. The most realistic simulations are based on reaction-diffusion models and involve a considerable computational burden. The aim of this study was to develop a computer model of cardiac electrical activity able to simulate...
متن کاملEffect of the preparation program on the anxiety of candidate patients for cardiac electrophysiological interventions: A randomized clinical trial
Introduction: Patients' anxiety in cardiac electrophysiological studies (EPS) and ablation due to its unknown aspects needs more attention and the necessary measures to reduce it. The aim of this study was to determine the effect of the preparation program on patients' anxiety waiting for these interventions. Materials and Methods: This clinical trial was carried out in parallel with the partic...
متن کاملSinglet scalar dark matter in noncommutative space
In this paper, we examine the singlet scalar dark matter annihilation to becoming the Standard Model particles in the non-commutative space. In the recent decades, many candidates of dark matter have been offered, but our information about the nature of dark matter is still limited. There are such particle candidates as scalar matetr, fermion, boson, gauge boson, etc.; however, they have nei...
متن کاملProbiotic treatment differentially affects the behavioral and electrophysiological aspects in ethanol exposed animals
Objective(s): Harmful effects of alcohol on brain function including cognitive phenomena are well known. Damage to gut microbiota is linked to neurological disorders. Evidence indicates that intestinal flora can be strengthened by probiotic bacteria. In this study, we evaluated the effect of probiotics administration on LTP induction in rats receiving ethanol.<em...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 66 6 شماره
صفحات -
تاریخ انتشار 1990